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Ocular neovascularization is a devastating pathology of numerous
ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1)
plays important roles in the vascular system. However, little is
known regarding its function and mechanisms in ocular neovascu-
larization. Here, using comprehensive model systems and a cell
permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a
critical player in ocular neovascularization. The genetic deletion of
Cav-1 exacerbated and cavtratin administration inhibited choroidal
and retinal neovascularization. Importantly, combined administra-
tion of cavtratin and anti–VEGF-A inhibited neovascularization more
effectively than monotherapy, suggesting the existence of other
pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we
found that cavtratin suppressed multiple critical components of
pathological angiogenesis, including inflammation, permeability,
PDGF-B and endothelial nitric oxide synthase expression (eNOS).
Mechanistically, we show that cavtratin inhibits CNV and the sur-
vival and migration of microglia and macrophages via JNK. To-
gether, our data demonstrate the unique advantages of cavtratin
in antiangiogenic therapy to treat neovascular diseases.

caveolin-1 | ocular neovascularization | cavtratin | angiogenesis |
inflammation

Ocular neovascularization is a blinding pathology of numerous
ocular diseases, such as wet age-related macular degeneration,

retinopathy of prematurity, and diabetic retinopathy. Currently, the
premier treatment available for ocular neovascular diseases is anti–
VEGF-A therapy, which mainly targets vascular endothelial cells
(ECs) (1). However, drug resistance to anti–VEGF-A therapy has
emerged as a serious challenge (2) and effects of anti–VEGF-A
therapy decline for most patients within the first 4 years of treat-
ment (3). Moreover, not all patients with neovascular diseases are
responsive to anti–VEGF-A therapy (4, 5), suggesting the existence
of other important angiogenic components. Indeed, tremendous
efforts have been made in the field to identify new target of anti-
angiogenic therapy. One such example has been the development
of Fovista, a PDGF-B inhibitor. However, combination therapy of
Fovista with anti–VEGF-A fails to improve vision in patients with
wet age-related macular degeneration (Ophthotech Corp., De-
cember 2016), suggesting a more complex scenario of pathological
angiogenesis than anticipated.
In addition to ECs, vascular pericytes and smooth muscle cells

(SMCs) contribute significantly to pathological neovascularization.
Once newly formed vessels are covered with pericytes and SMCs,
they become more stable and less sensitive to anti–VEGF-A
therapy (6). It is thus important to target vascular pericytes and

SMCs together with ECs in antiangiogenic therapy. PDGF-B is a
key factor regulating the proliferation, survival, and migration of
vascular pericytes and SMCs (7), and it has attracted much atten-
tion in the field as a potential target for antiangiogenic therapy.
Apart from vascular cells, pathological angiogenesis comprises
many other critical components such as inflammatory cells, vascular
permeability, and numerous proangiogenic molecules (8, 9). Studies
have shown that microglia and macrophages play critical roles in
pathological neovascularization (10, 11). The depletion of microglia
or macrophages inhibits ocular angiogenesis, and the intravitreal
injection of microglia boosts blood vessel growth (11). Moreover,
while being a rich source of VEGF-A, microglia and macrophages
can also promote neovascularization in a VEGF-A–independent
manner by regulating complement systems, cholesterol metabo-
lism (12), extracellular matrixes, and neuropilin-mediated integrin
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signaling (13). It is thus pivotal to target microglia/macrophages as
well as to improve the inhibition of pathological angiogenesis.
Among ocular neovascular diseases, vascular hyperpermeability is

a serious pathology causing edema, retinal detachment, and vision
loss (14). Vascular permeability plays a critical role in pathologi-
cal angiogenesis. Hyperpermeable vessels lead to plasma protein
leakages into the extravascular space, producing a proangiogenic
matrix that promotes angiogenesis and attracts proangiogenic in-
flammatory and mesenchymal cells. Thus, vascular permeability
precedes the onset of neovascularization and is a determining
factor of pathological angiogenesis (15, 16). It is therefore highly
desirable to identify strategies that can be used to inhibit vascular
permeability together with macrophages, microglia, and PDGF-B.
Caveolin-1 (Cav-1) is a major structural protein of caveolae

found in cell membranes that plays critical roles in numerous cel-
lular functions, such as cell survival and migration (17). Cav-1
regulates multiple signaling pathways by interacting with different
molecules such as endothelial nitric oxide synthase (eNOS) (18),
through its scaffolding domain. Cav-1 is highly expressed in ECs
(19), microglia (20), and macrophages (21). The loss of Cav-1 by
genetic deletion in mice enhances tumor angiogenesis and abnor-
mal permeability (15, 22–24), and the overexpression of Cav-1 in-
hibits angiogenesis in a hind limb ischemia model (25). Moreover,
the application of cavtratin, a cell-permeable peptide of the scaf-
folding domain of Cav-1 that mimics Cav-1 functions, inhibits tu-
mor growth (16, 26). However, little is known of the roles of Cav-1
in ocular neovascularization and of the underlying mechanisms.
In this study, using multiple in vitro and in vivo models, we

investigated the effects of Cav-1 and cavtratin on ocular neo-
vascularization and the cellular and molecular mechanisms in-
volved. We found that Cav-1 is highly expressed in choroidal
neovascularization (CNV). In vivo, a loss of Cav-1 by gene deletion
exacerbated CNV, and cavtratin treatment markedly inhibited both
choroidal and retinal neovascularization by reducing inflammation,
vascular permeability, and PDGF-B and eNOS expression. Impor-
tantly, a robust synergistic effect of cavtratin with VEGF-A neu-
tralizing antibody was observed for inhibiting CNV. Mechanistically,
we show that cavtratin inhibits the transmigration and survival of
macrophages and microglia via the JNK pathway. Together, our
data show the unique advantages of cavtratin for antiangiogenic
therapy by targeting multiple critical components of pathological
angiogenesis. Cavtratin may therefore have great therapeutic value
in treating neovascular diseases.

Results
Caveolin-1 Is Expressed and Up-Regulated During Ocular Neovascularization.
Cav-1 is highly expressed in the eye (27). However, little is known
regarding its role in ocular neovascularization. To investigate this, we
examined whether Cav-1 is expressed in the fibrovascular mem-
branes of proliferative diabetic retinopathy (PDR), which contain
capillaries and inflammatory cells. We found that Cav-1 is highly
expressed in the fibrovascular membranes of PDR (Fig. 1A), sug-
gesting that Cav-1 may play a role in ocular neovascular diseases. We
next examined whether Cav-1 is expressed in CNV using a laser-
induced mouse model. Western blots show that Cav-1 protein levels
were higher in the choroids and retinae with CNV at different time
points (Fig. 1B). This observation is further confirmed by real-time
PCR at a RNA level (SI Appendix, Fig. S1). Moreover, immuno-
fluoresence staining 3 d after laser injury detected Cav-1 expression
in the CNV area colocalized with IB4+ staining, which identifies
ECs, microglia, and macrophages (Fig. 1C). Indeed, this is further
supported by F4/80 staining, which identifies microglia and macro-
phages but not ECs (Fig. 1D). Thus, Cav-1 is up-regulated in CNV
and is expressed in ECs, microglia, and macrophages.

Cav-1 Deficiency Exacerbates CNV and Microglia/Macrophage Infiltration.
We next performed a loss-of-function assay using Cav-1 knockout
mice, and we investigated whether Cav-1 plays a role in CNV. In a

laser-induced CNV model, Cav-1 deficiency markedly increased
CNV formation as measured by IB4 staining 7 d after laser treatment
(Fig. 2 A and B). Histological analysis of the eyes with CNV showed
no obvious morphological difference between Cav-1–deficient and
wild-type mice (SI Appendix, Fig. S2). Microglia and macrophages
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Fig. 1. Caveolin-1 is highly expressed in ocular neovascularization. (A) Immu-
nofluoresence staining results show that Cav-1 (green) is abundantly expressed in
the fibrovascular membranes of proliferative diabetic retinopathy. (B) Western
blots show increased Cav-1 protein levels in choroids and retinae with CNV
at different time points (n = 8). (C) Immunofluoresence staining shows
Cav-1 expression in CNV colocalized with IB4 staining, which stains vascular
ECs, microglia, and macrophages. (D) Immunofluoresence staining shows
Cav-1 expression in F4/80+ microglia and macrophages. [Scale bars: (A) 25 μm
and (C and D) 50 μm.]
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are critical for CNV development (11, 28). Iba1 staining, which
identifies microglia and macrophages, revealed more Iba1+

cells in Cav-1–deficient CNVs (Fig. 2 A and C). Thus, a loss of
Cav-1 increased CNV formation and microglia/macrophage
infiltration.

Cavtratin Inhibits CNV and Has a Synergistic Effect with Anti–VEGF-A
Treatment. Cavtratin is a cell-permeable peptide of Cav-1 that
mimics Cav-1 function (16, 26, 29). As Cav-1 deficiency increased
CNV, we hypothesized that cavtratin might inhibit CNV. Indeed,
we found that the intraocular injection of different doses of cav-
tratin inhibits CNV formation in a dose-dependent manner as
measured by IB4 staining 7 d after laser injury using VEGF-A
neutralizing antibody (nab) as a positive control (Fig. 3 A and B).
Histological analysis of the eyes with CNV showed no obvious
morphological difference between cavtratin- and Antennapedia
(AP)-treated eyes (SI Appendix, Fig. S3). We next tested whether
cavtratin has a synergistic effect with VEGF-A nab, which mainly
targets endothelial cells. We found that at suboptimum doses, the
intravitreal injection of cavtratin or VEGF-A nab alone before
(Fig. 3 C andD) or after laser injury (SI Appendix, Fig. S4) does not
inhibit CNV. However, when cavtratin and VEGF-A nab were
administered together, CNV was significantly inhibited before (Fig.
3 C and D) or after laser treatment (SI Appendix, Fig. S4), sug-
gesting that cavtratin likely acts independently of the VEGF-A
pathway. These data thus reveal synergistic effects of cavtratin
with VEGF-A nab in inhibiting CNV.

Cavtratin Inhibits Retinal Neovascularization, Vascular Permeability,
and eNOS Expression. Retinal neovascularization is a devastating
pathology of many blinding diseases, such as retinopathy of
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Fig. 2. Cav-1 deficiency exacerbates CNV and increases the number of
microglia/macrophages in CNV. (A and B) Cav-1 deficiency by gene deletion
markedly increased CNV shown by IB4 staining (green) 7 d after laser treat-
ment (n = 16, 18; P < 0.05). (A and C) Iba1 staining (red), which identifies
microglia and macrophages, shows more Iba1+ cells in Cav-1–deficient CNVs
(n = 16, 18; P < 0.05). Data are presented as the mean ± SEM values. *P < 0.05.
(Scale bar: 50 μm.)
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prematurity and diabetic retinopathy. As cavtratin markedly in-
hibited choroidal neovascularization, we hypothesized that it
might suppress retinal neovascularization as well. We tested this
using an ischemia-induced retinal angiogenesis model. Indeed,
we found that intraocular injection of cavtratin inhibited retinal
neovascularization (Fig. 4 A and B). As increased vascular per-
meability is a serious pathology of ocular neovascularization, we
next investigated whether cavtratin plays a role in this. Using a
laser-induced CNV model and an Evans blue permeability assay,
we found that the intravitreal injection of cavtratin decreased
vascular permeability levels in both retinae and choroids 7 d after
laser injury (Fig. 4C). As eNOS plays an important role in vas-
cular permeability, we investigated whether cavtratin regulate
eNOS levels and phosphorylation. We found that in primary
human retinal endothelial cells (HRECs), cavtratin treatment
decreased levels of both total and phosphorylated eNOS to a
similar extent in a time-dependent manner (Fig. 4D), while no
significant change was found at a RNA level as shown by real-
time PCR (SI Appendix, Fig. S5). Thus, cavtratin inhibits retinal
neovascularization and vascular permeability and down-regulates
eNOS expression.

Cavtratin Inhibits Microglia/Macrophage Infiltration, Transmigration,
and Survival. Microglia and macrophages play critical roles in
ocular neovascularization (28, 30). We therefore investigated
whether cavtratin affects microglia/macrophages in CNV. Immu-
nofluoresence staining using Iba1 as a marker for microglia/
macrophages and IB4 for ECs shows that cavtratin treatment
reduces the number of Iba1+ cells in CNV lesions 3 d after laser
treatment (Fig. 5 A and B). Indeed, this was confirmed by a
real-time PCR assay using F4/80, another marker of microglia/
macrophages (SI Appendix, Fig. S6A). During CNV formation,
macrophages are recruited from the bloodstream after trans-
migration through vascular ECs (28). We next investigated the
effects of cavtratin on the transmigration of human monocytic
THP-1 cells through a monolayer of HRECs (SI Appendix, Fig.

S6B). Cavtratin treatment markedly reduced the number of
transmigrated THP-1 cells (Fig. 5 C and D). We next investigated
whether cavtratin affects microglia/macrophage survival using an
MTT assay. We found that cavtratin treatment markedly decreases
the survival of mouse macrophage cell line Raw 264.7 cells, mouse
microglial cell line N9 cells, and mouse primary bone marrow-
derived macrophages (BMDMs) (Fig. 5 E–G). Consistently, a
TUNEL assay confirmed that cavtratin treatment increases apo-
ptosis in BMDMs (Fig. 5 H and I). Moreover, Western blot shows
that cavtratin inhibited lipopolysaccharide (LPS)-induced iNOS
expression in cultured Raw 264.7 macrophage cells (SI Appendix,
Fig. S6C), suggesting that cavtratin may suppress macrophage
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activation. VEGF-C expression was not affected (SI Appendix,
Fig. S6D). Thus, cavtratin inhibits the migration and survival
of microglia/macrophages.

Cavtratin Down-Regulates PDGF-B and JNK Mediates the Effects of
Cavtratin. We next investigated genes regulated by cavtratin. We
found that cavtratin down-regulates PDGF-B expression in
N9 microglia and BMDM cells at a protein level as shown by
Western blot (Fig. 6 A and B) and at a RNA level as shown by a
real-time PCR (SI Appendix, Fig. S6E). This is also true in vivo as
the intravitreal injection of cavtratin down-regulates PDGF-B ex-
pression in mouse eyes with CNV as shown by a Western blot (Fig.
6C) and a real-time PCR (SI Appendix, Fig. S6F). We next in-
vestigated molecular mechanisms underlying the effects of cav-
tratin. We found that cavtratin induces JNK phosphorylation in
both N9 microglia (Fig. 6D) and BMDM cells (SI Appendix, Fig.
S7). We further verified whether JNK plays a role in mediating
effects of cavtratin. Using a JNK inhibitor SP600125 and an MTT
assay, we found that the JNK inhibitor SP600125 eliminates the
antisurvival effect of cavtratin on N9 cells (Fig. 6E). In mouse
retinal endothelial cells (MRECs) and human umbilical vein en-
dothelial cells (HUVECs), cavtratin also reduced cell proliferation
in an MTT assay (SI Appendix, Fig. S8 A and B). However, the
JNK inhibitor SP600125 displayed little effect on the antisurvival
effect of cavtratin on these cells (SI Appendix, Fig. S8 A and B).
Importantly, in a mouse CNV model in vivo, SP600125 attenuated
the antiangiogenic effect of cavtratin (Fig. 6 F and G). By contrast,
a p38 inhibitor SB203580 did not eliminate the effect of cavtratin

(SI Appendix, Fig. S8C) even though cavtratin induced p38 phos-
phorylation in N9 microglia cells (SI Appendix, Fig. S8 D and E)
and in primary mouse BMDMs (SI Appendix, Fig. S8 F and G).
These data thus suggest that effects of cavtratin are mediated by
the JNK pathway.

Discussion
In this study, we found that Cav-1 is highly expressed in ocular
neovascularization, and a loss of Cav-1 by gene deletion exacer-
bates CNV. Consistently, cavtratin, a cell permeable peptide of
Cav-1 that mimics Cav-1 functions, inhibited both choroidal and
retinal neovascularization. Importantly, cavtratin regulates multiple
critical components of pathological angiogenesis, including in-
flammation, vascular permeability, and PDGF-B and eNOS ex-
pression. Noteworthy, the effect of cavtratin appears to be at least
partially VEGF-A independent, as combined administration of
cavtratin and VEGF-A neutralizing antibody inhibited CNV more
efficiently than monotherapy. Mechanistically, we reveal that cav-
tratin has a direct inhibitory effect on the survival and migration of
macrophages and microglia via the JNK pathway. Our data thus
show that cavtratin has a multitargeted antiangiogenic effect that
may be of promising therapeutic value for the treatment of
neovascular diseases.
Over the past several years, combination therapies that target

VEGF-A and PDGF-B have attracted much attention in the
field. Superior outcomes from such combination therapies in
inhibiting pathological angiogenesis were highly expected. However,
it was recently announced that the PDGF-B antagonist Fovista
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when combined with Lucentis fails to improve treatment out-
comes (Ophthotech Corp., December 2016), suggesting that
besides VEGF-A and PDGF-B, other important components of
pathological angiogenesis must be considered. Indeed, apart
from vascular ECs, pathological angiogenesis involves multiple
critical aspects, including inflammatory cells that produce large
quantities of angiogenic factors, increased capillary permeability
levels that enrich the proangiogenic interstitial compartment,
and vascular mural cells and fibroblasts that promote neovessel
growth. Thus, inhibiting VEGF-A and PDGF-B alone may not
be sufficient to achieve the best antiangiogenic effects. The
identification of new and better antiangiogenic reagents that can
inhibit multiple critical pathways of pathological angiogenesis
remains an urgent task.
In this work, we found that the combined use of cavtratin and

VEGF-A neutralizing antibody is more effective in inhibiting
pathological angiogenesis than monotherapy, suggesting that the
antiangiogenic effects of cavtratin are at least partially VEGF-A
independent. Indeed, this finding is substantiated by several lines of
evidence. For example, we found that cavtratin has direct effects on
inflammatory cells and on PDGF-B and eNOS expression. Cav-
tratin treatment inhibited the transmigration of macrophages
through ECs, thereby limiting their recruitment to the neo-
vascularization site. Cavtratin also markedly decreased the viability
of microglia and macrophages, which contribute considerably to
pathological angiogenesis. Indeed, in an immunologic mouse
model of multiple sclerosis, cavtratin reduces inflammatory cell
infiltration and demyelination, leading to the improvement in
blood brain barrier function and thus retarding inflammation and
subsequent demyelination (31). As microglia and macrophages are
not major cellular targets of VEGF-A, these findings may explain
the additive antiangiogenic effects of cavtratin on anti–VEGF-A
therapy, suggesting that Cav-1–induced signals may represent at
least some of the mechanisms of drug resistance or unresponsive-
ness to anti–VEGF-A therapy.

Apart from the effect of Cav-1 on microglia and macrophages,
we found that cavtratin inhibits vascular permeability in CNV.
Increased vascular permeability in the eye is a fatal pathology
that causes edema, retinal detachment, and when uncontrolled,
blindness (1). Given the instrumental role of vascular perme-
ability in early phases of pathological angiogenesis, antileakage
effects of cavtratin confer an additional ability to inhibit neo-
vessel growth. In addition, cavtratin down-regulates expressions
of PDGF-B and eNOS in vitro and in vivo. PDGF-B is known to
be a key growth factor for vascular mural cells and fibroblasts.
Furthermore, eNOS plays a critical role in vascular permeability
and angiogenesis (16, 26). Thus, by down-regulating PDGF-B
and eNOS, cavtratin can suppress vascular mural cell compo-
nents that play important roles in pathological angiogenesis.
In summary, in this study, we reveal that Cav-1 is a critical

player in ocular neovascularization and that cavtratin inhibits
pathological angiogenesis by suppressing multiple critical com-
ponents of pathological angiogenesis. Our findings suggest that
cavtratin may have promising therapeutic applications for the
treatment of neovascular diseases.

Materials and Methods
All animal experiments were performed according to the Association for
Research in Vision and Ophthalmology Statement for the Use of Animals and
were approved by the Animal Care and Use Committee at the Zhongshan
Ophthalmic Center, Sun Yat-sen University. The Cav-1–deficient mice were
obtained from The Jackson Laboratory and described previously (32). More
details of materials and methods are provided in SI Appendix.
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